Processing Japanese sentences as a zero-sum game
Shodai Uchida, Manabu Arai, Edson T. Miyamoto, and Yuki Hirose

Special thanks to Takane Ito,
Douglas Roland

Expectations in comprehension

- We build expectations about upcoming material during comprehension

- Many previous studies demonstrated expectations at the lexical level (e.g., Kutas & Hillyard, 1980)

- Recent studies demonstrated expectations at the syntactic level (structural prediction) (e.g., Staub & Clifton, 2006; Lau et al., 2006)

Surprisal theory (Hale, 2001; Levy, 2008)

- Expectation is directly linked to cost
- Expected processing difficulty is proportional to the change in the probability distribution over possible structural options from one word to the next
 \[\text{difficulty} \propto - \log P(w_i|w_{i-1}, \text{CONTEXT}) \]
- A word that triggers a large change in the distribution is difficult to process
 \[\Rightarrow \text{Narrowing structural options (i.e., pruning) should be associated with cost} \]

Consider the following two sentences

(a) 女子高生はデザイナーにネックレスを注文した。
 school girl-top designer-dat necklace-acc
 • intransitive \(\Leftarrow\) pruned
 • transitive \(\Leftarrow\) pruned
 • ditransitive \(\Leftarrow\) pruned
 \(\ldots\)
 \(\Rightarrow\) larger cost for pruning

(b) 女子高生はデザイナーのネックレスを注文した。
 school girl-top designer-gen necklace-acc
 • intransitive \(\Leftarrow\) pruned
 • transitive \(\Leftarrow\) pruned
 • ditransitive \(\Leftarrow\) pruned
 \(\ldots\)
 \(\Rightarrow\) smaller cost for pruning

Consider the following two sentences

(a) 女子高生はデザイナーにネックレスを注文した。
 school girl-top designer-dat necklace-acc
 • intransitive \(\Leftarrow\) pruned
 • transitive \(\Leftarrow\) pruned
 • ditransitive \(\Leftarrow\) pruned
 \(\ldots\)
 \(\Rightarrow\) smaller cost for pruning

(b) 女子高生はデザイナーのネックレスを注文した。
 school girl-top designer-gen necklace-acc
 • intransitive \(\Leftarrow\) pruned
 • transitive \(\Leftarrow\) pruned
 • ditransitive \(\Leftarrow\) pruned
 \(\ldots\)
 \(\Rightarrow\) larger cost for pruning
Consider the following two sentences

(a) 女子高生は デザイナーに ネックレスを 注文した。
school girl-top designer-dat necklace-acc ordered
larger cost for pruning \rightarrow \text{smaller cost for pruning}

(b) 女子高生は デザイナーの ネックレスを 注文した。
school girl-top designer-gen necklace-acc ordered
smaller cost for pruning \rightarrow \text{larger cost for pruning}

⇒ processing sentences as a zero-sum game

Konieczny and Döring (2003)

• Contrasted a dative NP with a genitive NP with head-final construction in German

(a) Subject, [that NP-nom NP-dat NP-acc verb], verb
(b) Subject, [that NP-nom NP-gen NP-acc verb], verb....

The verb was read faster in (a) than in (b)

• The dative NP, but not the genitive NP, facilitated the processing of the verb (i.e., anti-locality effect)

What’s still missing

• If early pruning at the preverbal arguments indeed facilitated the processing at the verb, the early pruning of unlikely structural options itself should cause processing cost.

• Such pruning cost has not been documented so far

Cost of pruning

• There should be cost associated with pruning at preverbal arguments

Our study

• Contrasted the dative NP with the genitive NP with Japanese head-final construction (Konieczny & Döring, 2003)

• Investigated whether we observe increased cost at the preverbal constituents (early pruning) and reduced cost at the verb for the sentence with a dative NP

(a) NP-top NP-dat NP-acc verb

\text{cost for early pruning} \rightarrow \text{reduced cost}

(b) NP-top NP-gen NP-acc verb

\text{no pruning} \rightarrow \text{cost for late pruning}

Estimating the probability of the upcoming ditransitive structure

• We conducted a sentence completion test

• participants produced continuations to the fragments below

(a) NP-top NP-dat......
(b) NP-top NP-gen......

• We also included the fragments with an adjective and noun without case maker

(a') NP-top NP-dat Adjective Noun......
(b') NP-top NP-gen Adjective Noun......

• We had 24 items and tested 32 native speakers of Japanese
A significant main effect of NP1 Case ($p < .001$)

1. More ditransitive sentences with dative NPs than with genitive NPs

A significant interaction between case (dative/accusative) and construction type (+/- adjective + noun) ($p < .001$)

2. Even more ditransitive sentences when the dative NP followed an adjective + noun

More ditransitive sentences with dative NPs than with genitive NPs

…

Our study: Manipulation

- Manipulated case for NP1 (dative vs. genitive)
- Also manipulated case for NP2 (accusative vs. nominative)

The probability of the ditransitive structure

(a) NP-top NP1: dat
(b) NP-top NP1: gen

more ditransitive structures are predicted

⇒ processing cost is predicted to be larger in (a) than (b)

less ditransitive structures are predicted

no difference

The majority of the prediction after the NP-dat was ditransitive. The majority of prediction of the ditransitive structure will be pruned by the NP-nom.

Cost of early pruning at preverbal NPs

NP1

(a, c) NP-top NP1: dat Adjective + NP2

pruning cost

(b, d) NP-top NP-gen Adjective + NP2

no pruning

In the dative condition (a,c), options other than ditransitive structure are pruned at NPs.
Prediction II
- Reduced cost at the ditransitive verb (V1) following NP\-dat

<table>
<thead>
<tr>
<th>Case</th>
<th>NP1</th>
<th>NP2</th>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>NP-top</td>
<td>NP-dat Adjective no pruning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>NP-top</td>
<td>NP-gen Adjective no pruning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>NP-top</td>
<td>NP-dat Adjective pruning cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>NP-top</td>
<td>NP-gen Adjective pruning cost</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) < (b)
(c) ≈ (d)

- Measured eye-movements during reading using EyeLink II (SR Research)

Method
- Created 24 items
- N=32 native speakers of Japanese (One participant excluded due to low comprehension question accuracy)

Data analysis
- We focus on the following measures
 - First pass (fp) = 1 + 2
 - Regression path (rp) = 1 + 2 + 3 + 4
 - Second pass (sp) = 8
- Reading times were analyzed using Linear Mixed Effects models
- The best-fit model with the optimal random slope structure was selected using a backward selection approach

Regions of our interest
We report the results for the following regions

<table>
<thead>
<tr>
<th>Subject</th>
<th>NP1</th>
<th>Adjective</th>
<th>NP2</th>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>That school girl</td>
<td>the designer</td>
<td>unique earing</td>
<td>ordered want</td>
<td>seem</td>
<td>said</td>
</tr>
<tr>
<td>-top</td>
<td>-dat/gen</td>
<td>-acc/nom</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NP1 Region
- No main effects or interaction in any measures

Adjective Region (first pass no regression)
- A main effect of NP1 Case (p<.05)

- NP1 dative slower than NP1 genitive
- The cost of early pruning (= Prediction I)

<table>
<thead>
<tr>
<th>Subject</th>
<th>NP1</th>
<th>Adjective</th>
<th>NP2</th>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>That school girl</td>
<td>the designer</td>
<td>unique earing</td>
<td>ordered want</td>
<td>seem</td>
<td>said</td>
</tr>
<tr>
<td>-top</td>
<td>-dat/gen</td>
<td>-acc/nom</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary of results

<table>
<thead>
<tr>
<th>Subject</th>
<th>NP1 Case</th>
<th>Adjective</th>
<th>NP2 Case</th>
<th>V1 Case</th>
<th>V2 Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>That school girl</td>
<td>top</td>
<td>the designer</td>
<td>unique</td>
<td>earring</td>
<td>ordered</td>
</tr>
</tbody>
</table>

- **NP-dat > NP-gen**
 - Increased cost due to early pruning before the verb
- **NP-dat NP-acc < NP-gen NP-acc**
 - Reduced cost at the verb following the early pruning

However, we are still not sure whether increased cost and reduced cost are directly related in individual trials.

Further Analysis

Link between early pruning cost and late reduced cost

- All the previous analyses examined reading times in each region separately.
- We still do not know whether the slower reading times at Adjective were indeed paired with the faster reading times at V1 in individual trials.
- We paired the first pass no regression times at Adjective with second pass times at V1 for each trial and calculated their log-ratio.

Further Analysis

Link between early pruning cost and late reduced cost

- A significant interaction between NP1 Case and NP2 Case ($p<.05$)
- The same pattern of interaction in total times at V1 ($p<.05$)
Further Analysis

Link between early pruning cost and late reduced cost

- The ratio in dative-accusative was greater than genitive-accusative (dative: 3.22; genitive: 2.42; p < .05)
- No difference between dative-nominative and genitive-nominative (p > .1)

Reading times at the Adjective region and those at V1 region are linked

Summary of further analyses

In ditransitive structure,

Conclusions

- Confirmed two predictions based on surprisal
 1. early increased cost at nouns
 - Two preverbal arguments pruned structural options, causing early pruning cost
 (new finding for this study)
 2. late reduced cost at verb
 - The cost at the ditransitive verb was reduced due to early pruning
 (replication of Konieczny and Döring (2003))

- 1. and 2. are related within individual trials
 ⇒ underscoring the zero-sum nature of the processing

Thank you for listening!!