Introduction

- People process sentences **incrementally** and build representations without delay as each word is read or heard. (Marslen-Wilson, 1975)

- Three alternative algorithms for building tree structures.
 - bottom-up parsing
 - top-down parsing
 - left-corner parsing (LC parsing)

Parsing algorithms

- **bottom-up parsing** $B \Rightarrow C \Rightarrow A$
 - conservative: never makes predictions

- **top-down parsing** $A \Rightarrow B \Rightarrow C$
 - liberal: can make an unbounded number of predictions

- **left-corner parsing**
 - limited predictions:
 - based on the left-corner node B, projects A
 - based on A, predicts C
LC parsing in Japanese

In Japanese, how does LC parsing construct the tree structure, when the sentence-initial NP input is nominative or dative?

Attachment preference in Japanese

"Taro" can be attached to either verb.

a. Taro-\text{-}ga hon-\text{-}o katta-\text{-}to itta.
 Taro_nom book_ACC bought_that said

b. Taro-\text{-}ni hon-\text{-}o katta-\text{-}to itta.
 Taro_dat book_ACC bought_that said

Attachment preferences:
When "Taro" is nominative \rightarrow it attaches to the matrix verb "said"
When "Taro" is dative \rightarrow it attaches to the embedded verb "bought"
(Miyamoto, 2007)

\Rightarrow Only LC parsing can predict this preference.

In sum:

LC parsing has advantages over top-down parsing and bottom-up parsing.

- It correctly predicts the difficulty in center-embedded constructions
- It explains attachment preferences for sentence-initial NPs in Japanese
 (Miyamoto, 2007)

Purpose of this study

We report:
- Evidence supporting LC parsing as a better candidate to explain memory load in the comprehension of sentences in Japanese
- Evidence against processing models in which working-memory load is determined by dependency relations alone (e.g., the Dependency Locality Theory, DLT, Nakatani & Gibson, 2010).

LC parsing and working memory load

LC parsing should affect the memory load of sentence-initial NPs in Japanese.

Taro-ga/-ni long VP-internal adjunct V.
NP-nom/dat \Rightarrow \Rightarrow \Rightarrow

Working memory load in the VP-internal adjunct...

- In the NP-dat, it increases.
- In the NP-nom, it does not increase.

\Leftrightarrow DLT: only considers dependencies needed to complete the sentence; it cannot explain this difference.
When the NP is **dative**, working memory load in the VP-internal adjunct **increases**.

When the NP is **nominative**, working memory load in the VP-internal adjunct **does not increase**.

Reading-time experiment

2. **Nominative NP condition**
 - Taro ga kôhî-no oisari Ginza-no oshigare-na kissaten de netaeita.
 - Taro, NOM coffee—GEN tasty Ginza—GEN stylish café—LOC slept.
 - Taro was sleeping in a stylish café in Ginza whose coffee is tasty.

b. **Dative NP condition**
 - Taro-ni kôhî-no oisari Ginza-no oshigare-na kissaten de atta.
 - Taro, DAT coffee—GEN tasty Ginza—GEN stylish café—LOC met.
 - (Someone) met Taro in a stylish café in Ginza whose coffee is tasty.

Prediction

Reading Times at the critical region (VP-internal Adjunct) should be...

LC parsing: Working memory load in the dat condition is bigger.
→ longer in 2b (dat condition) than in 2a (nom condition).

Bottom-up parsing: It does not predict upcoming heads.
→ both conditions are equally easy. (no difference)

Top-down parsing: It attaches incoming materials to TP1.
→ both conditions are equally costly. (no difference)

※Models like DLT predict **no difference** in the critical region.

Method

- **Participants**: 14 native Japanese speakers from the University of Tokyo.
- **Materials**: 24 sets of experimental items with 48 distractors presented in pseudo-random order.
- **Analysis**: Reading-time analyses were conducted for the sentences whose comprehension question was answered correctly.
- **Trimming**: Points beyond 5000 ms and below 150 ms were removed.
 - Then, points beyond 3 SD from the condition-region mean were eliminated (less than 2% eliminated).
Results

- In the Critical Region (Regions 2 to 6), reading times in the dative condition were statistically longer than in the nominative condition.

![Graph showing reading times comparison]

Discussion

- In the critical region (also when excluding region 2), reading times were statistically longer in the dative condition. ⇒ greater working memory load in the dative condition.
- As predicted by LC parsing. Against: bottom-up and to-down parsing. (predicted no difference) ⇒ LC parsing is the most plausible alternative.
- Keeping track of the number of syntactic head alone is not enough (contra DLT: Nakatani & Gibson, 2010).

On-going experiments

1) LC parsing predicts the same working memory load for dative NPs and accusative NPs. ⇒ A new experiment including an accusative condition.
2) What caused the long reading times? Was it really working memory load? ⇒ In ERP, memory load is associated with a sustained anterior negativity (e.g., in Japanese, Ueno & Kluender, 2003).

References